Loading…
Tuesday, June 21 • 4:25pm - 4:50pm
The Tail at Scale: How to Predict It?

Sign up or log in to save this to your schedule and see who's attending!

Scale-out applications have emerged as the dominant Internet services today. A request in a scale-out workload generally involves task partitioning and merging with barrier synchronization, making it difficult to predict the request tail latency to meet stringent tail Service Level Objectives (SLOs). In this paper, we find that the request tail latency can be faithfully predicted, in the high load region, by a prediction model using only the mean and variance of the task response time as input. The prediction errors for the 99th percentile request latency are found to be consistently within 10% at the load of 90%for both model and measurement-based testing cases. Consequently, the work in this paper establishes an important link between the request tail SLOs and the low order task statistics in a high load region, where the resource provisioning is desired. Finally, we discuss how the prediction model may facilitate highly scalable, tail-constrained resource provisioning for scaleout workloads.

Tuesday June 21, 2016 4:25pm - 4:50pm
Denver Marriott City Center 1701 California Street, Denver, CO 80202

Attendees (1)